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USING INFLUENCE DIAGRAMS

TO SOLVE THE CALIBRATION PROBLEM

1. INTRODUCTION

A measuring instrument measures a unit and records an observation y_

The "true" measurement. x, of the unit is to be inferred from y. If p(yx)

is the likelihood of y given x and x has prior p(x), then by Bayes' Theorerr

p(xly) a p(ylx)p(x).

2Let x° and a be the mean and variance of p(x). We will assess the

likelihood, p(ylx), using a linear regression model

y =a + P(x-x 9 )+C (1.1)

where x is specified and a priori (aP) I x I E and E given x is N(O,)

with c specified. (These assumptions could of course be relaxed; e.g. o2

unknown, E dependent on x, etc. However our assumptions are convenient ,U

sufficiently general to provide conclusions of general interest.)

The "center". x . of the likelihood model and the prior for x arc

intertwined. The natural choice for x is the mean of the prior for x,

namely x = x . This is reasonable since our attention is focused on
0

".,1%

''p.
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calculating p(xjy). The line, with x = xo , is y a + P(x - x ) where a zi:,
0 0

are unknown and of course y cannot be observed without error. See Figiuu.

1.1. Of course the prior for (a.13) depends on x = x° and we may write

p(a.P) = p(alp,.x o) p(p) since, in general, only a depends on xo.

Figure 1.2 is an influence diagram describing the logical and

statistical dependencies between unknown quantities, decision alterntiv-,

and values (losses or utilities). The decision may be an estimate for x

given y. If the worth or loss is

w(d.x) = (d - x)2

then the optimal decision will be the posterior mean for x given y.

The Calibration Experiment

The purpose of the calibration experiment is to learn about ( So) so

that given a future observation y we can reduce our uncertainty about a

future "true" measurement x. To calibrate our measuring instrument, we

record n measurements

y = (yi'.y2 . .Y)

on n units all of whose -true- measurements.

x = (x 21 .x2 .  xn)

are specified beforehand. Based on our prior. p(x). for a future x (call ,"

xf) and our regression model (1.1). our problem is to determine

x = (xX 2 ... ) (subject to feasibility constraints) so as to minimize

some overall loss function. x is called the experimental design for the

calibration experiment.

N
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The following assumptions will be made relative to the calibration

experiment.

Assumption I. The future "true value". xf. is independent of (a,4). x z,d

y. The future observation. yf, is independent of (x.y) given (a.,).

Assumption 2. The worth function w(d.xf) is a loss function and depends

only on d (the decision regarding xf taken at the time we observe yf) and

the "true value" xf. For example, we are ignoring the cost of performiny:

the experiment.

Assumption 3. The feasible region, R, for the experimental design, x, is

bounded. That is, infinite x. values are not allowed in practice. We seekI

an optimal experimental design subject to x E R.

Figure 1.3 is an influence diagram describing the logical and

statistical dependencies between the unknown quantities and decision

variables in our problem. Figure 1.4 shows the influence diagram after

(a,4) have been eliminated by computing the posterior distribution,

p(a.f3x.y) and then calculating

P(yfi x.y.xf) = ff P(YfI a.p.xf) p(a.P l x,y) da do.

[Influence diagram operations are discussed in Shachter (19SG) and Barlow

(19S7).]

2
If we take squared error loss. (d - xf) , as our worth function whe.t-

xf is the future "true" measurement of a unit, then d is our estimate of

after we observe a future yf. Note that at the time of decison when we

estimate xf. we know x. y and yf. Since we do not know xf at this time.

p(xfIyf.y,x) must be found via Bayes' Theorem and

-I
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Vm

f(d x 2)PX lfyx dxf
-0

calculated. The minimizer is the posterior mean

d = E(xflyf.YX)

so that after observing yf,. our worth function is

Var(xf lYf.y.x).

At the design stage, we of course do not know yf or the test result, y

Hence, using the method of Bayesian decision analysis we must minimize

DEF
E y1 E yf1 yx Min E xl Y y 'x [w (d.xf) ly f 'Y 'X] = W(x) (1.2)

with respect to x = (xIx 2 '. '' xn). W(x) is the final expected worth

function with respect to the experimental design x.

For a more detailed discussion of this problem and references to othIc",

approaches see Chapter 10 of Aitchison and Dunsmore (19S0). Hoadley (1970)

discusses the calibration inference problem in some detail and points out

the difficulties with the maximum likelihood estimator for xf given an

observation yf and data {(xYi), i = 1,2....n} from a calibration

experiment. Brown (19S2) and Brown and Sundberg (19S5) extend Hoadley's

results using a multivariate formulation. However they do not consider tl,.

problem of optimal Bayesian experimental design. The definitive refere:c.

for Bayesian design for linear regression is Chaloner (19S-1). The objecti\(

of this paper is to discuss the calibration experimental design problem a

results for special cases.

"- . .-.- - -. -. --.- . ,- .i.? - .. . ., .,. .: - . , ., - .- *- ..- .--. .- . - .- - .. -- .- -..- -. . -_. ,s . .. .*



TQ

Summary of Results

Based on the likelihood it is shown that the experimental design m.'v ,

n 2 2
(Xsummarized by n, x - x = 7(x. x )/n and v =(x. - xo) /n where

1 0 X 1 0

ix - x 0( v X.

If 3 is known, W(x) depends only on n and the optimal design corresponds .

taking n as large as possible. The values of x are immaterial. If a is

n 2
known, W(x), depends only on Y(x. - x ) and is decreasing in v for fixed

01 0

n.

If both a and f3 are unknown, the optimal design can be found by

performing a three dimensional search over (n.x, V). W(x) can be evaluated .

numerically by using three nested subroutines when the prior for (a,/3) is

bivariate normal and w(dxf) = (d - xf) For this case and xf N(x. ,

we can explicitly calculate W(x1ab = 0). Also for this case, W(xx 1 =X

X = X) can be numerically calculated using two nested subroutines.

2. WORTH OF INFORMATION GAINED

Suppose we perform the calibration experiment x. Then

Min E [w(d.xf)] - W(x) (2.)
d xf

is a measure of the expected reduction in our uncertainty about xf (when

w(d,xf) = (d - xf)) as a result of performing the calibration experiment.

Lemma 2.1 shows that this difference is 0. This is the familiar ex-pect: -

information inequality in our notation [Raiffa and Schlaifer (1961)]. It

gives us easily computed upper bounds on W(x) as a result of performin.- th.
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calibration experiment. This is useful in checking computer calculatiors-.

From Figure 1.3 we see that at the time of decision (e.g. estimating Xf) ~

know x, y. and yf. It is intuitively clear that when w(d~xf) is a loss

function the final expected value will be greater the less information we

* have at the time of decision.

The following results stated as lemmas will be used in the next

section.

* Lemma 2.1. If the range of possible decisions. d. does not depend or, x or :

then

E 1j Ey Min E [w(d.xf)1yf.Y.X]

< E yMin E Ifyf[w(d~xf)lfl
- Y~f d Xff

< Min E [w (d.xf)]
d f

Vi

* Proof. We will prove the first inequality. Let

Min E I[w(d.xf)lyf] Ex Ei w[d (y).X]Ily}
d fIf Xf l f f

so that

E.jxEyfy i Exf 1r~fw(dxf- w[d(y).x]]jyyx 0.

We need only show

Eyjx Eyfly~ Ex f yyXw[do(yf).xf]y IY.*X}

EYf xf fy f X]lfl

% %



From Bayes' theorem and the fact that xf is independent of (x.y) we have

P(xf.yfIx.Y)P(YIx) = [p(y[xf.yf.x)p(xf.yf)/P(YIX)]P(YIX)

= p(ylyf,x)p~xf,yf).

The result follows by an interchange in the order of integration.

The second inequality follows in a similar way. QED)

Remark. E Min E [w(d,xf)[yf] corresponds to not performing the
yf d xf[yf

calibration experiment (i.e.. n = 0). When w(dxf) = (d - xf) 2 the above

inequalities become

Eylx Ey lyx Var(xflyf,.y.x) _ E Var(xflyf) Var(x,)
Yf

It follows from Lemma 2.1 that the expected worth function can only

decrease if we perform additional calibration experiments. We use this fact

later. (This would not be true if w(-,.-) depended on (xy).)

Lemma 2.2. Under the assumptions of Lemma 2.1 and w(d.xf) a loss functio.

W(x I .... ) W(x X
n ( 1 .-1 ' n1 )

where the first n coordinates are the same on both sides of the inequality.

3. LIKELIHOOD AND THE OPTIMAL EXPERIMENTAL DESIGN

Under the assumption that observation errors, {EI i = 1,2.....n) are

independent N(O.c2 ), but without specifying prior distributions, we can

determine some of the structure of the optimal experimental design. This

can be done using the sufficient statistics for (a.f) corresponding to our

likelihood model. As noted before, the purpose of the calibration

experiment is to learn about (a,). The likelihood for (aP) given the a..

is
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L(a.13IEata~x 0 a exp{-7[y. a Px 0]/c(3.1)

2
A priori assume a I1 P3 1 E and let E(a) =a, E(P3) b, Var(a) c and

Var(13) = c . Define

e. y -a - b(x. x)
1 1 1 0

and rewrite

y. a - 1(x.i-x 0) = [y. a - b(x.i-x 0 (a-a) (1-b)(x.i-x 0

= e -(a -a)- (13 b)(x. x)
1 0

so that

L(a.I3Ilhta~x)
0

a exp{-[n(a a) + P-b) 7-xx 22e.[(a -a) +
1 ~ 0 .1

(P3 - b)(x. x.)] + 2(a - a)(13 b) I(x. x 0)]12c ). (3.2)

2
%Clearly n. I(x - x ) (x~ - x) z 1= le. and z 7-e.(x. - x ) are

.40 i 1 1

sufficient statistics for (a.13) since x 0 a. b and a are specified. It

follows that the posterior density for (a,13) also depends on the data only

through n, Ix - x), 2(x. - x ) , ad z
1 0 1 0 *Z n 2*

n
Theorem 3.1. W(x) depends on x only through n. x - xO I (x, - xo)/n and

i

2 n 2
v = - ) /n.

N. B. This is true for all worth functions w(d.xf) and priors on (a.fi) and

*Xf The worth function can also depend on n, x -x and v in this case.

f 0
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Proof. The purpose of the calibration experiment is to learn about (au,).

Since n. x - xo v , z1 and z2 are sufficient statistics for (a.0). the t(.-,

results, y, may be summarized by z1 and z2' Hence from (1.2) we need orjl\

show that the joint distribution of (z1 ,Z2 ) depends on x only through n,

x-x andv0 x

It is easy to show that (zl1z2) given (a,p) is bivariate normal where

z1 given (a.3) is
n

2
N[n(a - a) + (13-b) I(x1 - x ), no2]01

and z2 given (a,p) is

n 2 2 n 2
N[(a -a) I(x - x ) + (13-b) 2(x i  x0) a (xi - 0)

1 1 1 1 x)

while

2n

Cov(z 1. z2 Ia.13) = a 7(x i - x ). QED
1

Corollary 3.2. If 1 is known, i.e. cb= 0, then W(x) depends on x only

through n. The "levels" (xl, x2 -. -x n) are immaterial and we might just as

well take

X 1 -= 2x x=X
1 x2  n 0

or any other values that we like.

Proof. If we are certain that 3 = b; i.e. cb = 0, then (3.2) becomes

) - 2 n2
L(alDatax a exp(-[n(a - a) - 2Ye.(a - a)]/2a2}.

0 1

n n
Hence n and z 1 = le = -[Yi - a - b(x - x 0 )] are sufficient for a.

Since z1 given (a.3=b) is

N[n(a - a). no2]

it follows that W(x) depends on x only through n. QI D

• .
.r...
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Corollary 3.3. If a is known, i.e. a = 0. then W(x) depends on x only

S(x ) 2. Furthermore, for fixed n, W(x) is decreasing in v

In this case. W(x) is minimized for those x belonging to R for which v i-

maximum.

Proof. If a = 0. then (3.2) becomes

2n 2n 2.
L(13IEata. xo) a exp{-[(3-b)2  (xi-xo)2 -2(0-b)lei(xi-Xo)]12o

n 2n

Hence (xi - x )2 and z l e.(x. - x ) are sufficient for P. Since z
Hec 0(x 2 1 1 01 1 1

given (a = a. P) is

n2 2 n 2
N[(- b)l(xi - x 0) a Y(xi _ x )

1 1 o 1 0 -

it follows that when a = a is known. W(x) depends on x only through

n 2
I(xi - x )
1' -

n n 2
Suppose I(x ) < I(x x Clearly we can find x such tI.

T(x. -x 0
2  (xi  )2 + (Xn+l x) 2

n+l 2
= I(x x)

1 1 rp
0.

From Lemma 2.2 in section 2 we have

W(xI  ,xn) W(x, . ,x )

n }
Hence W(x) is decreasing in (x - x 2 for fixed n.

1 o

I1
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Determining the Structure of the Optimal Experimental Design

Since

n
( - 2 > 0

I(x. x) /n>_

it follows that

n-2 n2 2
(X- xo+x - x) /n = I(xi - /n- (x - x > 0

and Ix - xl < v.

Consequently, the minimization problem with respect to x car, be transform(C,

to a minimization problem with respect to only three variables, namely n ai;('.

wx- x 01 x
Since x - x and v are symmetric functions of an experimental design x.0 X

it follows that. for fixed n, any permutation of the coordinates of an

experimental design solution is also a solution (if allowed by the

feasibility constraints). Figure 3.1 shows the nature of the possible

(x ,x2 ) solutions for v fixed and n = 2. The darkened arcs on the

circumference show the possible designs for a fixed vx (up to permutations

xxof coordinates). For fixed vx , possible solutions are traced out by the

intersection of the line x - x = c with the circumference of the circle

2 2 2
x + x 2 = vx as c varies from -v to v1 2 xx xo

The optimal experimental design, x. can, in theory, be found throug, 8

three dimensional search over the feasible region R. One strateg. would br

to fix n and, using a computer calculate a three dimensional plot of

Wx) xEyfyx Mind Ex (yyx[w(dxf)yf.y.x]

ff

'- =- - '-- , ,,, , ,d m,. ,, , ,, i _,,,=.,. i .:.2, • • . ", . - - - - -. .. . . . . .. . ,." .
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versus x - x and v . Figure 3.2 illustrates the 3 dimensional plot for a

fixed n. The plot shows the surface of W(x) as a function of

*X I I <, 0 - X

The Case x1 = x2 = ... = xo

Suppose we are uncertain about both a and 3. From (3.2) we see that i!

x I 2 = x ,then
nn o

L(a, 1 Data) a exp{-[n(a - a) - 22e.(a - a)]/2o2}

so that in this case the data provide no direct information about j3. If ii,

addition, the prior for (a.P) satisfies

p(a.Plxo} a p(alx°) P(3)

i.e. a and P are a priori independent given x . then

p(a.PlDataxo) a L(alData.x) p(alxo) p(P)

and the posterior marginal for is the same as the prior marginal for i.

Intuitively. if 3 is unknown, the experimental design

=X 9 = ... X n

is a local maximum for the final expected value since values of x . near x0

will provide information about 3 and hence tend to reduce the final ex-pect(,(

value.

The Case w(d,xf) = (d - xf) 2

In this case

W(x) = Ey Ey yxVar(xflyf.y.x)

= Eyx Ey Jyx Ex (xf2 IYf.y.x) - Eyjx Eyfjy.xjExfjy'x(Xfjyf'y'x)'
y Ix Ef{E 1 (XfXff.Y.X)f

Since xf Is independent of (xy). we can explicitly evaluate the first t,:'

so that

W(x)= 2 + x 2 E E(FX '--)o o ylx Yfly.xxf ly.xff

I

':p : " ...'"-- --'-- -"-: -' .. ." .-- --- ., ..-.. ...
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4. BIVARIATE NORMAL PRIOR FOR (a.0)

To calculate W(x) for a particular experimental design we need to

assess a prior distribution for (a,3). Suppose a I 1 6 and a has a

N(a,ca2 ) distribution while 13 has a N(b, b2 ) distribution a priori. Tab'(

4.1 gives the posterior bivariate normal parameters given the sufficicrt

n n 2
' statistics n, x - x. v e z = 7e and z = le.(x. - x ). Note that

2. and p a, do not depend on the observations. y, from the calibratio:.2

experiment. The derivation of the posterior parameters in Table 4.1 is

given in the appendix.

Our objective is to calculate W(x) for a given experimental desigr x.

However, this is in general exceedingly difficult numerically. Hence we Z :."

also interested in bounds and efficient computational methods for special

cases,-

.. 5

n.5

.o.

'S

.°

.5 
5.,5

p

.5
o°

'x,',. ,. . .L .... 't,..,h ,'- % A,' ,,,,,2. ,, ,. ,, ,, _._. . ', .- ,, • . *. ,.',. • ". , ..- .. . ,- . - ,, ,.. . .
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a I -S2i-x )

(~ 2/ 2)[,(X. -x ) 2 + /a b- 'xix)

a a (n+c 2 / 2 )[.Y( x ) 2 + c2,2] 2 2

5%S =b+a (n / 2 + c 22

/2 a22 2

cr2 2 2 2 2 2(n+o /C )[I(x -x) + c /a 2(.x)

i1 0

2 2

S.(342 2 2 2 2 22
- ~~ ~(~ C )[(x -x ) + c /C -[(x-)

a i 0 ~~lb I ] xix)

where

e. =y. -a -b(x. x)
1 1 1

TABLE 4.1. Parameters of the Posterior Distribution of (na/)

Given x and y



From the influence diagram, Figure 1.3, we see that at thec tim. oif

decision, a and 13 are unknown. Hence we must first calculate thepou

distribution of a and 13 given n, x - x , vxz and z 2  The distrib-tin:.,

yf given xf. y and x is then

+ 
3
(Xf x) s 2 (Xf)]

where

2 2~ 2~ 2 2s (Xf a+ ad 0 0 (xf - x 0) +

+ 2Cov(a.,)(xf - xo). ( .;
f 0

Using Bayes' theorem

P(Xflyfy.x) a p(yflxf,y.x) p(xf)

2 2
a exp{-[yf - "1a - J13(xf - Xo)] /2s (Xf)) P(Xf). ('W"

Subtract pa from yf and let "

Wf =Yf 0a .

From (4.2). it is clear that

Xf I (Yf .y)I wf. I/ v

i.e. wf and j are sufficient for xf with respect to (yf.y) where for

convenience ... stands for all parameters which depend only on n. x and v

Since we consider n, x and v fixed and known in this section, we will o-:'x

2 2these parameters in our conditioning statements. Also a . c . and po.

depend only on n, x. v and our bivariate normal prior parameter values.x

Hence these will also be omitted henceforth in our conditioning stateme.'-

Based on sufficiency considerations for bivariate normal priors., th,

iifluence diagram in Figure 1.3 can be redrawn as in Figure 4.1. N(!.

whenever we needed to use Bayes' theorem (to achieve arrow reversals) iT "
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also helpful at that point to employ sufficiency considerations to reduce

the parameter space.

Calculation of W(x)

(4.2) is the crux of our numerical difficulties since p(xfIwf.P') is

not normal even when xf is N(xoo 2). Figures 4.2 and 4.3 are plots of

E(xflyf) and Var(xflyf) versus yf when the calibration experiment is not

performed (i.e. n = 0). Were xf and yf jointly bivariate normal, Var(xf ly)

would not depend on yf as it obviously does in Figure 4.3.

Using Figure 4.1 we see that

W(x) = E 1 EWf1 ll Min EM [w(dxf)Iwf. PIg].

When w(dxf) = (d - Xf)2 we have

W(x) = E Ew Var(xf wf. p).

We can thus numerically calculate W(x) using three nested subroutines for

each x. The computational running time will be proportional to the prod,:cz

of the number of points used in each subroutine.

The Distribution of wflxf. A

To calculate the posterior distribution of xf given wf and p we need

first to calculate the distribution of wf given xf and p

Theorem 4.1. p(wf)xf.P is N[p(xf- x), s2(xf)] where s2 (Xf) is give.

by (4.1).

Proof. Clearly E[wf Ixf.pp] F E[wfxf.P.P/] = l/p(xf - x.). Since xf i-

independent of (a.() and y and (zl.z 2 ) only appear in ji and p

Var(wf xf4L/3) =

E [Var(wftxf, Pa. P )Ixf ' P1 ]
Pa [ f

+ Var aaE(wflxf ' 2)x. B.

f.P ."fP I
"Ea



I

I

z -

9 4-

.4 

- 4-

K 

-~ -

I *.* 4K

1

I -

9

(NJ (N r- (N 
I

(NJ (NJ - - C C
4 . . . . . . - -

K C C C C C C I I 
4-

____________________ 

A

* -I---~----; p

* ~~-.~a~H<---ZZ Z~- >~

S 

4.

I

4-



.p. 4

*0~

~Im

C
.1

C -

* +

C

C-

C<

.4.

.4-

*0

4.-

.4.

.4-

.4.

p.

I

... *~*~**-*.*-.*.:.*.*.*. . ~ * * :..; * *.. . ~ .*>.. p... p.. p...



26

From (4.1) we see that the first term is the same as s2(xf) which is

constant in (zlz 2 ) while the second term is 0. QEID

5. NUMERICAL CALCULATION OF W(x) WHEN (a.3) IS BIVARIATE NORMAL

The Case When 3 is Known and w(d.xf) (d - xf) 2

As we noted in Section 3. when ab = 0 a priori, Var(x fwf, i) depcrnd

on the experimental design only through n.

Theorem 5.1. If ob = 0. xf is N(x . a 02) and w(d.xf) = (d - xf) 2 then

W(x) ={ b2/[a
2 +a a2] + 1/a 02-1

where a 2 = (i 'v 2 + 1/a2)-1.

Proof. Since p(wflxf.a.13 = b) is N[b(xf - X), a ] the predictive density

for wf, p(wflxf, jib = b). is

N[b(xf - x.). 2 +a2].

If p(xf) is N(xo , ao ) a priori, then by Bayes' theorem

P(xflwf) a p(wflxf) p(xf)

a exp{-[wf - P (xf - xo)] 2/2(a2 + a 2)) exp[-(xf - X)2/2 o].

Collecting terms in the exponents we find

2 2 2 2-1
Var(xflwf) = [ b /(a + a2) + I/ ]

while

E(xflwf) = {[b 2/( 2 a2 )][wf] + x/ 2 }

[b 2/(2 +a
2 ) + 1/ao ]

Since Var(xflwf) does not depend on wf in this case.

W(x) = Var(xflwf). Q1II

. 2]
* -. . .. " . . " € " "/,-. . . . . , , •- € " ., - -- .. .". . '.- . •.. - " " .• .. . 4.. . . • .
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The Case When x 1 =x 2 =. X x and w(dx) (d xf)

In this case we can numerically calculate W(x) using two nested

subroutines. Because of the comparative ease of computation, this is almo,'I

as good as a closed form solution.

As we saw in Section 3. this choice of x will provide no information

about P. Hence V = b and

W(x) = EwfVar(xf'wf)

Thus only two nested subroutines are required. In this case wf given xf a!

2
U1 =b is N[b(xf - Xo), s (Xf)]

2 2 ~2 2 2ab f 2

" where s (xf) = + a + . f

ana2 2 2-1
and a =(n/a + l/Oa)

%a

.. The General Case

To numerically calculate W(x) using three nested subroutines we need

the density of W From Table 4.1 we see that p is a linear combination of

z 1 and z2 . Since z 1 and z2 are unconditionally bivariate normal it follo\ss

that U13 is N(b.o 2 ) where a 2 depends on the covariance matrix of (zl.))

2
It is easy to verify that z is N(O.o1  where

n

02 2 2+ 22 +n 2
12 na2 + [7(x 1  Xo )]2ab + n

i

while z is N(O.a2
2 ) where

2 2 2 2 222 2 n 2
1 1

... • -- P :- 2 " ' (, .x 0)] i. + I. " x " C b + a .. .-

I,
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Jointly z1 and z2 given x, a. a. b. ca . and 
0b are bivariate normal with

covariance

o12 = Cov(zl.z21o,a.b,x)

n n 2 n n - 2n 2

1n(x i - Xo) aa + [1(x i - xo)] 1(x. - xo) 2b + c2:(x. - x)

Using Table 4.1. let

i,=b + c 1zI + c 2 z 2

where

n
., -[I(x i - xo)]/D

,-, I

2 2
C 2 =(n + /a )/D

and
2 2n 2 2 2 n2

D (n + 2/o/2)[I(x. - )2 + 22] - [(x i - xo)]2
a 1 1

2)
It follows that p, is N(b.a 2 where

2 2 2 2 2
0 =C 1 01 + C 2 02 + 2cIc2O12

1-

-o
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APPEN'DIX

DERIVATION OF THEI POSTERIOR PARAMETERS IN TABLE 4.1

Suppose x and y have joint density

2 2
p(x.y) a exp[-(ax + bx * cy + dy + exy)/2]

where a, b, c. d and e are constants. Then it follows that the p:'.ir (x,,)

has a bivariate normal distribution; i.e.,

p(x.y)

exp-[ (x-a )2/a 2-2p ap (X-pa)(y-uP),"ao + (y-P 2/C 2]/2(1 -2 )}

27r oa c J (l~ 1p 2

By matching coefficients in corresponding terms in the exponents *p aL :

aB. and Pp can be expressed in terms of a, b, c, d. and e.

2 2 2
The coefficent of x is c = /c - ].

2 2 2The coefficient of xy is e = -2/[(1 - p)LaOC ]

P af3

2 2
Now 4p = e /ac implies p = -e/s4ac and

2 2 2
a = 1/a(1 - p a4 2 ) = 4c/[4ac - e]

o 0= 1/c(1 - po-52 ) = 4a/[4ac - e ]

From the coefficient of x we have

b -2p alac2 + 2p p fl/a a-a 3/(1 - pa2

while from the coefficient of y we have

/2 2
d [-2p3/C + 2pafl Pa/O a a 0/0- pap2

"* ,' . . . . . . .-. . .. . . . . . .- '



By taking aa times the first and pa aB3 times the second equation

bo + dp a -2p /a0
a a1313 a 13

so that

2t" Pa -[ba+ dPa[ a af/2

-[b4c/(4ac - e2) - de4J ac /2--(4ac - e2)]/2

2
= [de - 2bc]/[4ac - e2 ]

and also

2
pp= [be - 2ad]/[4ac - e ]

etc.

|o' 
'S
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